

Controlled Synthesis of Multiwalled Carbon Nanotubes for CO₂ Adsorption Application

Shazia Shukrullah & Muhammad Yasin Naz

Department of Physics, University of Agriculture Faisalabad, Pakistan

ABSTRACT

Highly crystalline MWCNTs were produced in bulk and functionalized with H₂SO₄/HNO₃ and APTS for their potential application in CO_2 adsorption. Oxidation and functionalization of nanotubes and consequently their adsorption capacity were purely based on degree of crystallization. The breakthrough curves revealed higher CO₂ adsorption capacity of modified MWCNTs than the pristine ones. High CO₂ uptake of 129 cm3/g was achieved with fully functionalized MWCNTs.

RESEARCH BACKGROUND

Green-house effect is considered as one of the most important environmental issues that humanity faces. CO_2 is acknowledged as the most conspicuous greenhouse gas, with its atmospheric concentration being continuously increased. The high amounts of CO₂ gas increasingly dispersed in the atmosphere have motivated academia and industry to develop new technologies for CO₂ sequestration and storage. This study was aimed at development of Carbon Nanotubes based CO₂ adsorbents.

RESEARCHPROBLEM & OBJECTIVES

The past research efforts have not been translated into high percent yield of nanotubes with well-defined structures, favorable for easy functionalization and high CO₂ adsorption. In line with this, degree of functionalization and inter-tube spacing integration for CO₂ adsorption have not been fully understood. Therefore a thorough study is imperatively required to look into the highlighted aspects.

***** The presented work was aimed at production of good percent yield of highly crystalline MWCNTs and their functionalization to achieve better CO₂ adsorption capacity.

